

 Computer Science Honours

 Final Paper 2018

Title: A Portable Large Volume Email Retrieval System

Author: Shivaan Motilal

Project Abbreviation: FINDMAIL

Supervisor: Associate Professor Hussein Suleman

Category Min Max Chosen

Requirement Analysis and Design 0 15 0

Theoretical Analysis 0 25 0

Experiment Design and Execution 0 20 20

System Development and Implementation 0 10 10

Results, Findings and Conclusion 0 20 20

Aim Formulation and Background Work 0 10 10

Quality of Paper Writing and Presentation 0 10 10

Adherence to Project Proposal and Quality of Deliverables 0 10 10

Overall General Project Evaluation [requires explicit motivation

from the project supervisor]

0 0 0

A Portable Large Volume Email Retrieval
System
Shivaan Motilal

University of Cape Town, South Africa

mtlshi005@myuct.ac.za

ABSTRACT
This paper presents the development of a portable
system that allows you to search over mbox and maildir
email archives. It specifically addresses the problem of
locating and viewing past emails from archives, in the
case of them significantly increasing in volume and
being exported into large archives. The tool developed
and discussed in this paper aims to help users to better
organize and manage their email, giving them the
convenience of locating past emails across multiple
operating systems. The system parses and indexes the
archives correctly but takes a long time to generate the
inverted index for search. The index itself is created on
the basis of simplicity as a means for portability, and
thus plain XML files are used as indices.

CCS CONCEPTS
• Information systems → Information retrieval →
Specialized information retrieval • Software and its
engineering → Software libraries and repositories •
Software and its engineering ➝ Software Portability

KEYWORDS
Portable; Searchable; Email formats; Offline; Archives;
Indexing; Parsing; User interface; Query System

1. INTRODUCTION

Email users who are busy with their day-to-day work
often find themselves having to manage large volumes
of incoming email as time goes by. Emails are either
deleted or archived by the email user, depending on the
importance of the email contents. If a user decides to
archive their email, it usually contains information the
user would like to access again in the future. Over time,
these email archives can however become huge and
what Whittaker et al. [17] termed as “email overload”,
can occur. This is a situation whereby manually
retrieving emails from large archives becomes arduous

and time-consuming. This can be caused by many
factors, such as poor personal information management
and having large volumes of high priority email.

Along with the problem of “email overload”, there also
exists the issue of archives becoming obsolete through
software aging [9]. To address the issue of
obsolescence, various preservation strategies have to be
considered and then deemed appropriate to fit the
context of the problem presented.

A portable offline searchable email archive that handles
multiple email formats (such as mbox and maildir) was
the proposed solution to the email overload and
obsolescence issues mentioned. The search
functionality addresses the problem of email overload
by efficiently retrieving specific emails from a large
email archive, while the portable and offline features
allow for the archive to be less likely to become
obsolete in the short-term. The parsing and indexing
component of the proposed solution is detailed in this
paper.

The whole project is divided into two logical sections,
which, when used together, create the FINDMAIL
system. The two sections are namely:

1. Pre-Processing:

This is the process that includes parsing and
indexing of the inputted archives of various
email formats. Parsing consists of extracting
and re-structuring relevant information from
the inputted archive, while indexing is the
process of creating indices from the parser
output. This is the main focus of the rest of this
paper.

2. Email Processing:

This consists of the user interface and query
system. The query system should ideally
allow for fast and efficient retrieval of emails,

mailto:mtlshi005@myuct.ac.za

while the user interface should display emails
clearly to the user and allow for ease-of-use.
The query system should also be able to handle
various queries, including single-word and
phrase queries.

1.1. Project Significance

There are currently a few existing tools such as
Windows Mbox Viewer [11], Mailpile [5] and Mairix
[10] that allows users to view and search over their
archive. These tools however are not platform
independent and, if they are, they usually involve going
online and having an Internet connection.

What we aim to provide is a tool that users can use
offline to browse and search through their email
archives, without having to worry about the operating
system they are using. We would like this project to
encourage and assist individuals in better managing of
their emails.

We hope that the FINDMAIL system will allow users to
better organize and handle their email, in the case of
their email being stored in large archives. Ideally, we
would like the user of the system to be able to parse and
index archives of large sizes without having to be
concerned about drastic decreases in performance. The
main objectives of this project is to answer the
following research questions:

● Can we create an indexing system that works for
the popular email formats (mbox and maildir), as
well as other relevant ones?

● Can both indexing and parsing work on multiple
platforms (portable)?

1.2. Project Structure

In the sections to follow, this paper will present detailed
information on the design and evaluation of the
FINDMAIL system. Firstly, related work that
influenced the design of the system is presented and
thereafter the design and implementation of
FINDMAIL’s parsing and indexing components are
shown. Secondly, the design of the experiments
conducted, as well as the results obtained are illustrated.
Finally, the ethical considerations, conclusions and
future work are provided .

2. LITERATURE REVIEW

2.1. Digital Collections:

In South Africa and other developing countries, most
preservation techniques cannot be implemented [15].
This is mainly due to insufficient resources or the high
cost of Internet bandwidth. These countries often have
to find alternative approaches that are more practical.

One such alternative approach of preserving digital
collections (which are inclusive of email archives) is
through applying the principle of simplicity when
creating the system [10]. A specific way of doing this
would be to use XML plain text documents to store
information and metadata. This would make the
information in the documents easier to retrieve after
many years have passed. This approach of simplicity
also enables seamless interconnection, extension and
modification of the features of that specific system,
thereby allowing for the system to operate on multiple
operating systems. This can be seen to address the issue
of technological obsolescence, which is relevant to
email systems as email users often access their emails
from archives that are in multiple formats and
sometimes on different operating systems [1].

An example of a system that used XML plain text
documents to store information is CALJAX. CALJAX
was developed by Suleman et al. [16], to be a generic
hybrid (online-offline) repository management and
access system that utilized a strong AJAX foundation.
The system allows for integration of content from a
local source with content from a remote source, through
the use of just a Web browser [16].

Expanding on the idea of hybrid offline and online
systems, is the idea of having a hybrid online-offline
digital collection (specifically an email archive) to
address issues such as poor Internet bandwidth and
digital preservation. Online and offline collections
present both advantages and disadvantages, thus a
hybrid digital collection(online-offline repository) could
interleave advantages from both, and potentially aid in
preservation [16]. The practicality of creating a hybrid

online-offline system is however an issue.
Complications that can arise include:

1. Inherited Security flaws: ensuring that
foreign-origin Web content included into the
web app cannot gain access to local resources
is important in hybrid systems. However,
hybrid applications delegate security
enforcement and this allows for flaws and
vulnerabilities in security to be inherited by the
application [6].

2. Inconsistency across devices and operating
systems: A hybrid application should be able to
run on multiple operating systems and
therefore when interfacing with these different
systems, lagging can occur. The appearance
and functionality of the system can vary
according to the type of operating system and
device (platform used) [16].

2.2. Email Archives:

Windows Mbox Viewer(WMV) [14], Mairix [13] and
Mailpile [5] are existing software projects that allow for
display and/or searching of email archives. WMV
allows for display of emails for archives in mbox
format, but does not provide search functionality. It
works offline and was designed specifically to work on
Windows. Its benefits are thus that it works on the
mbox email format and runs offline, and its drawbacks
are that it does not accommodate email formats other
than mbox and is not portable across multiple operating
systems.

Mairix [13] and Mailpile [5] are quite similar, both
include indexing and search functionality and both
index mbox and maildir formats. However Mairix,
additionally accepts the MH format email archive.
Mairix [13] works offline and is mainly for Linux
systems. It involves installation, which means it is not
portable across non-Linux operating systems.

Mailpile [5] is an email client and also a personal Web
mail server. It also has a much better user interface (in
comparison to WMV) that is based on Gmail. It works
on multiple browsers but does not work offline. It was

coded using Python, JS and HTML5, and is the most
relevant system to the one proposed in this paper.

3. DESIGN AND IMPLEMENTATION

3.1. Pre-processing

The design of the pre-processing components consisted
of the following:

3.1.1. Parser

Before indexing can occur, email archives
(sources/inputs) of different formats are streamed into
the application. The parser extracts relevant data
(constituents) from the email archives and passes this
data on to the indexer. The parser was created in Python
and made use of the Python mailbox module [11] as
well as the Python multiprocessing module.

3.1.2. Indexer

The indexer creates inverted XML plain text file indices
for searching and browsing through the archive. The
indices are accessible to the Web browser running
FINDMAIL, and can be parsed using Javascript. This
pre-indexing process is slow compared to the actual
search, but is necessary to obtain fast search results. The
indices for browsing are sorted according to sender,
date and subject. The indexer itself was also created
using Python.

3.2. Final System Design

The final design of the system incorporates one indexer
and one parser file written in Python. The parser file
accepts both maildir and mbox formats, branching to
either of the subclasses (parseMBOX or parseMDIR)
depending on the path entered in the terminal.

At the moment, both the parser and indexer classes have
code necessary to port the classes from Python 2 (2.7)
to Python 3. This involved the use of the Python Future
module, and all coding being done to support at least
Python 2.7. This means that the parser and indexer will
be able to run on Python versions 2 and 3 (specifically
Python 2.7 and above).

The parser implements both the Python mailbox and
multiprocessing modules. The mailbox module is used

to extract and perform various operations on the emails
within the archive. The multiprocessing module, on the
other hand, is used to speed up the run time of the
whole program. It trades threads for processes and if a
single instance of the Python interpreter is constrained
by the GIL (a mutable lock that protects access to
Python objects), one can achieve gains in concurrent
workloads by creating multiple interpreter processes
instead of threads. Each process is given a subtask of
the program parallelized. The indexer class also uses the
multiprocessing module for the same purpose.

Fig. 1. Overview of the FINDMAIL system

In Fig.1 above, the overall design of the system is
shown. The popular email formats, maildir and mbox,
are inputted into the parser. The parser then sends its
output to the two indexers (implemented between the
two python classes). The browser indexer will create
indices to facilitate browsing of the email, while the
search indexer will create indices for the search
functionality. Both of these indexers will interact with
the user interface to provide the services of browsing
and searching to the user.

The indices are in XML plain text format to aid
portability, as explained in Section 3.1.2. The particular
algorithm used to index the documents is the inverted
index information retrieval algorithm. The
implementation of this algorithm is very similar to the
one used to index the Bleek and Lloyd [3], with the
only difference being that the weighting is calculated
differently. Weights are taken to be the sum of all
occurrences of the word within that particular email.

The frequency of the occurrences is then later used to
order the documents according to relevance.

4. FINAL EVALUATION AND RESULTS

4.1. Evaluation Metrics

4.1.1. Efficiency and Effectiveness

Efficiency refers to measuring the time taken (speed) to
parse or index inputted archives, relative to the size of
the archive (size referring to the number of emails in
archive). The effectiveness, or accuracy, measures
correctness of the parser and indexer output ie. whether
the appropriate fields have been extracted fully from the
email.

4.1.2. Portability

Portability is a measure of the parser’s and indexer’s
ability to run on multiple operating systems, without
terminating due to an error. For the FINDMAIL
system, it also refers to the system being able to run on
multiple versions of Python.

4.2. Experiment Design

Efficiency tests were conducted by running the parser
and indexer on various datasets, and measuring the time
they took to execute. The datasets were of different
sizes (5000, 10000, 15000, 20000, 25000, 30000,
35000, 40000, 45000, 50000) and there were multiple
tests done on each dataset (3 trials). All datasets were of
maildir format and performance testing was done on a
ASUS X555L laptop. These tests were done on a 16.04
Ubuntu Linux operating system.

The data collections used were synthetic email archives
of maildir format. Synthetic meaning that the same
emails were replicated and used in each data collection.
This allowed for strict control over the number of files,
as the exact number of files could be generated for each
test.

The choice to use maildir instead of mbox, was so that
testing could also be done to see the impact of the
directory structure on the parsing and indexing time. In
the case of an email archive containing folders with
multiple levels of nesting, there could be errors or
issues that arise when parsing and indexing that archive.

For effectiveness, testing was conducted by looking at
the original email message and then the parsed message
(HTML and XML), and comparing whether the

extracted fields were correct. This was done for 20
randomly chosen emails. For the HTML files of these
emails, all the necessary fields were fully extracted and
displayed to the user (relatively 100% effectiveness).
For the XML files however, there were issues
translating certain special characters. This is explained
in detail in Section 5.1. Therefore, effectiveness can be
measured at 98% (98/100 fields correctly displayed) for
the XML files.

4.3. Portability Tests

The parser and indexer of the FINDMAIL system was
tested on Windows 10, Mac OS and Linux (Ubuntu
16.04 and 17.10) operating systems. The test for
scalability of the parser and indexer was performed on
an ASUS X555L laptop and an Ubuntu 16.04 operating
system. The results of the tests showed that the parser
and indexer could run on all the tested operating
systems. The parser and indexer were also tested with
different Python versions and this test showed that it
could run on Python versions 2.7 and above. The
python Future module was used to assess this [12].
Error handling was also done for Python versions 2.6
and below.

4.4. Analysis of Results

4.4.1. Efficiency and Effectiveness

In Appendix A, all the test results are shown. A
summary of the test results is shown in Fig. 2 and Fig.
3.

Fig. 2. Chart showing Time to Parse and Index various

sized maildir archives

From the graph shown in Figure 2 above, we see that as
the dataset size increases for the parser, there is

relatively linear increase in time up until approximately
size 30000. After size 30000, both the average parsing
and indexing times drastically increase. The main
reason for this phenomenon is unknown, but it could
possibly be the nesting and structure of the maildir
archives. The nesting within the sizes 40000- 50000
archives used for testing were up to six levels deep and
this meant that more directories needed to be traversed
and created for larger archives.

To test whether the nesting was causing the increase in
parse and index times after size 30000, archives of size
30000-50000 archives were restructured to have just
one level of nesting. They were then parsed and indexed
and their results recorded. Fig. 3 shows the summarized
results.

Fig. 3. Chart showing Time to Parse and Index various
sized maildir archives with one level of nesting

From Fig. 3 above, we see that the nesting does have an
effect on the time it takes to parse and index. The
average time to parse now seems to increase linearly
(with almost a gradient of 0) as the archive size
increases. The average time to index however does not
follow this trend; the gradient is much steeper and
similar to that of Fig. 2’s time to index. We can see
however, that in general the average time to index the
archive has decreased for all the archive sizes tested.

We can thus say that parsing and indexing is scalable in
the instance where the maildir archive has one level of
nesting and for small data sizes (around 30000 to
40000).

4.4.2. Portability

The parser and indexer, along with the entire
FINDMAIL system were successfully run on Windows
10, Mac OS and Linux (Ubuntu 16.04 and 17.10)

operating systems. This indicates that the FINDMAIL
system is portable across all the major operating
systems tested.

5. DISCUSSION

5.1. Efficiency

The structure of the indexer is such that it has to go
through every word in the original email and then write
to an index file. This creates an IO bottleneck and
results in the indexing process becoming slow for large
email collections. Writing to the XML files cannot be
avoided however, because the project is modeled with
the guiding principle of simplicity. The purpose of the
project was for the system to be portable, work offline
and support digital preservation. As previously
mentioned in Section 2.1, developing countries can use
simplicity to achieve all the previously mentioned
points.

Another more important point to mention is scalability
of the parser and indexer. It seems that the parser and
indexer is scalable but only if the maildir archive has
one level of nesting. It is not scalable for heavily nested
maildir archives and shows drastic increases for datasets
above 30000 in size. There could also be other reasons
for time fluctuations observed in this situation,
including an inefficient algorithm being used to parse
and index the dataset, or the process of writing to files
and folders causing the CPU speed to affect the total
time of the process to run (CPU bottleneck).etc. This
needs to be looked into and will be proposed as future
work in Section 8.

5.2. Effectiveness and Search

When measuring effectiveness, there were issues
decoding special characters that were not recognized by
the “ASCII” and “UTF-8” decoders. These special
characters could not be written to XML files. Due to
this issue, these characters had to be omitted from the
final XML output.

With regards to search, some emails did not have
certain fields such as “Subject”, “Sender” or “Date”.
These emails could therefore not be sorted. To
incorporate these emails to work with search and
existing python sorting libraries, dummy fields such as
“No Subject” were inserted into the XML files. Users
could thus search for emails without a subject (or other
relevant fields) and the sorting algorithm could group
these emails for the user.

It was found that during parsing and indexing, Python’s
inbuilt multiprocessing module did not work as desired
on Windows. The reason for this is due to the use of
“fork()” in Python’s multiprocessing module. On Linux
and other Unix-like operating systems, Python's
multiprocessing module uses fork() to create new child
processes that inherit a copy of the parent process's
memory state. This means the interpreter does not need
to “pickle” the objects that are being passed as the
process arguments, because the child process will
already have them available in their normal form.

Windows does not have a fork() system call however,
so the multiprocessing module needs to do more work
when running the child-spawning process. This excess
work is what leads to a “pickling error” when the
multiprocessing module is run under the condition “if
__name__ == '__main__' ” , on Windows. In Python
version 3.4, a new system was added to allow you to
select the start method that you would prefer to use.
For the current FINDMAIL system however, we do not
implement multiprocessing on Windows as it would
involve “pickling” all the objects passed as the process
arguments. This would mean restructuring the code
from scratch.

5.3. Portability

A number of different considerations were put in place
to achieve the notion of portability. The index was
composed of XML plain text documents to aid
preservation and portability, the FINDMAIL system
was coded in Python and using a browser to facilitate
portability and the indexer and parser were ported to
Python 3 for the same reasons. The FINDMAIL system
now runs on multiple operating systems and Python
versions, which means that portability has been
achieved as defined in the scope of the project.

6. ETHICAL, PROFESSIONAL, AND
LEGAL ISSUES

As this tool will be used to view and organize email
archives, it was important to ensure that privacy of the
users was maintained during testing. We thus used open
access data, such as the Enron dataset [1], and our own
personal email inboxes during testing. Efficiency and
effectiveness tests were done without recruiting
students. Thus, there were no ethical, professional and
legal to consider when those particular tests were
conducted.

7. CONCLUSIONS

7.1. The Parser and Indexer are Effective
but can be Improved

The design of the FINDMAIL system was based on the
design of the Bleek and Lloyd collection [3] and
therefore simplicity was prioritized to implement
portability. The plain XML files used for simplicity to
create the inverted index resulted in there being an IO
bottleneck upon indexing. Indexing is thus slower in
comparison to other indexing methods for large datasets
due of this. Writing to the files was necessary however,
to allow for the FINDMAIL system to run offline on
multiple platforms. Although, there is still room for
further speedup in the case of improving the algorithm
to index and implementing multiprocessing successfully
on Windows.

7.2. The Parser and Indexer are scalable,
but only for maildir archives with one level
of nesting and small data sizes

For heavily nested maildir archives, the parser and
indexer shows a deterioration in performance. For large
maildir archives, there are usually multiple folders
within folders that need to be traversed and this
increases the time to parse and index. The indexer still
shows a large increase in average indexing time for
large datasets above 30000, regardless of nesting. This
therefore means that scalability can still be improved
on, at least with regards to the indexer.

7.3. The FINDMAIL system is portable on
all major operating systems

The FINDMAIL system can run on Windows 10, Mac
OS and Ubuntu Linux. These are the top 3 main
operating systems used [6]. Parsing and Indexing work
when using Python 2.7 on all these systems.

7.4. Parsing and Indexing work on both
Maildir and Mbox formats

The current parser and indexer accepts both mbox and
maildir formats of email archives. Although the speeds
to parse and index differ depending on the format, the
indices are successfully and accurately created for
search afterwards regardless of the format.

7.5. The Parser and Indexer can work on
Python 2 and Python 3

After integrating the parser and indexer to work with
the Python future module, both the parser and indexer
can now run on Python versions 2.7 and above. This
will be particularly useful as an aid to portability as the
FINDMAIL system can run on multiple versions of
Python in addition to the major operating systems.

8. FUTURE WORK

If someone were to improve on this project, they could
make the parser and indexer scalable for heavily nested
maildir archives (2 levels and above of nesting in the
maildir) and look into the reason for the drastic
increases in time observed with datasets above 30000 in
size. A closer look at the multiprocessing module and
the file writing process would be helpful in this regard.
They could also test the scalability for mbox archives if
feasible and necessary.

Another point of improvement would be to have the
code (particularly the indexer) handle special characters
in emails better .ie. such that they can be displayed to
the user.

Finally, multiprocessing can be properly implemented
on Windows after “pickling” the objects passed as
arguments to the Python processes, during parsing and
indexing.

9. ACKNOWLEDGMENTS

I would like to give thanks to my fellow project team
member, Breyden Monyemoratho, for his contributions
and Hussein Suleman and Joseph Telemala for their
guidance throughout the project as project supervisors.
And an additional thank you to Michelle Kuttel for
her valuable input as second reader of the project. I
would also like to thank Sonia Berman for contacting
the second year students on behalf of us.

10. REFERENCES

[1] Ludäscher, Bertram, Richard Marciano, and
Reagan Moore. "Preservation of digital data with
self-validating, self-instantiating knowledge-based
archives." ACM Sigmod Record 30.3 (2001):
54-63.

[2] CALO Project. Enron Email Dataset, 2015.DOI:
https://www.cs.cmu.edu/~enron/

[3] Centre for Curating the Archive. The Digital Bleek
and Lloyd, 2018. DOI:
http://lloydbleekcollection.cs.uct.ac.za/

[4] DSA. Department of Student Affairs, 2018. DOI:
http://www.dsa.uct.ac.za/

[5] Mailpile. An email client, 2018. DOI:
https://www.mailpile.is/

[6] Georgiev, Martin, Suman Jana, and Vitaly
Shmatikov. Breaking and fixing origin-based
access control in hybrid web/mobile application
frameworks. NDSS symposium. Vol. 2014. NIH
Public Access, 2014. DOI:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC42
54737/

[7] Jakob Nielsen and Rolf Molich. 1990. Heuristic
evaluation of user interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in
Computing Systems (CHI '90), Jane Carrasco
Chew and John Whiteside (Eds.). ACM, New
York, NY, USA, 249-256.
DOI=http://dx.doi.org/10.1145/97243.97281

[8] Netmarketshare. Operating system market share,
2018. DOI:
https://www.netmarketshare.com/operating-system-
market-share.aspx?

[9] David L. Parnas. Software aging. In Software
Engineering, 1994. Proceedings. ICSE-16., 16th
International Conference on (pp. 279-287). IEEE.
May, 1994.

[10] Lighton Phiri and Hussein Suleman. In search of
simplicity: Redesigning the digital Bleek and
Lloyd. DESIDOC Journal of Library &
Information Technology, (pp 32-34), 2012.

[11] Python 3 Standard Library. Mailbox module, 2018.
DOI:
https://docs.python.org/3/library/mailbox.html/

[12] Python 2.7 Standard Library. Future module. DOI:
https://docs.python.org/2/library/__future__.html

[13] SourceForge. Mairix. Programme for indexing and
searching mail, 2009. DOI:
https://github.com/rc0/mairix/

[14] SourceForge. Windows Mbox Viewer, 2015. DOI:
https://sourceforge.net/projects/mbox-viewer/

[15] Hussein Suleman. An African Perspective on
Digital Preservation. In Multimedia Information
Extraction And Digital Heritage Preservation (pp.
295-306), 2008.

[16] Hussein Suleman, Marc Bowes, Matthew Hirst,
and Suraj Subrun. Hybrid online-offline digital
collections. In Proceedings of the 2010 Annual
Research Conference of the South African Institute
of Computer Scientists and Information
Technologists on - SAICSIT ’10, ACM Press,
421-425, 2010.

[17] Steve Whittaker, and Candace L. Sidner. Email
overload: exploring personal information
management of email. In Proceedings of the
SIGCHI conference on Human factors in
computing systems (pp. 276-283). ACM. April,
1996.

https://www.mailpile.is/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254737/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254737/
http://dx.doi.org/10.1145/97243.97281
https://docs.python.org/3/library/mailbox.html/
https://docs.python.org/2/library/__future__.html

APPENDIX A

Figure 2 Tests
Archive Size Class Trial 1 (s) Trial 2 (s) Trial 3 (s) Average

5000 Parser 4.81 5.12 4.96 4.963333333
Indexer 3.38 3.34 3.33 3.35

10000 Parser 9.15 10.59 10.4 10.04666667
Indexer 6.82 6.71 6.72 6.75

15000 Parser 18.4 16.16 16.26 16.94
Indexer 10.13 9.8 10.26 10.06333333

20000 Parser 25.61 26.01 23.15 24.92333333
Indexer 13.85 13.88 13.49 13.74

25000 Parser 28.53 28.46 27.72 28.23666667
Indexer 16.63 17.85 17.28 17.25333333

30000 Parser 34.2 36.12 36.62 35.64666667
Indexer 20.21 20.07 20.87 20.38333333

35000 Parser 67.91 64 70.69 67.53333333
Indexer 177.59 182.62 151.41 170.54

40000 Parser 253.9 247.95 222.93 241.5933333
Indexer 266.92 232.87 235.08 244.9566667

45000 Parser 315.71 316.55 308.47 313.5766667
Indexer 275.95 273.12 268.13 272.4

50000 Parser 348.81 329.84 336.21 338.2866667
Indexer 296.32 315.57 318.12 310.0033333

Size of Archive Average Time to Parse Average Time to Index
5000 4.963333333 3.35
10000 10.04666667 6.75
15000 16.94 10.06333333
20000 24.92333333 13.74
25000 28.23666667 17.25333333
30000 35.64666667 20.38333333
35000 67.53333333 170.54
40000 241.5933333 244.9566667
45000 313.5766667 272.4
50000 338.2866667 310.0033333

Figure 3 Tests- One level of Nesting
Archive Size Class Trial 1 (s) Trial 2 (s) Trial 3 (s) Average

30000 Parser 38.3 33.48 31.44 34.40666667
Indexer 86.12 66.04 57.97 70.04333333

35000 Parser 43.07 44.08 47.6 44.91666667
Indexer 77.87 78.96 81.87 79.56666667

40000 Parser 50.26 44.09 51.16 48.50333333
Indexer 97.38 86.21 97.39 93.66

45000 Parser 57.14 46.12 45.15 49.47
Indexer 171.07 207.89 186.79 188.5833333

50000 Parser 48.7 48.42 54.64 50.58666667
Indexer 231.73 230.87 229.87 230.8233333

Size of Archive Average Time to Parse Average Time to Index

30000 34.40666667 70.04333333
35000 44.91666667 79.56666667
40000 48.50333333 93.66
45000 49.47 188.5833333
50000 50.58666667 230.8233333

